
Week 6 - Wednesday

 What did we talk about last time?
 Exam!
 Before that:
 Dictionaries
 Review for Exam 1

 We started with programs that had no input
 All the data was hard-coded into the program

 We started prompting the user for information using the
input() command

 Now we will allow our programs to access data from
anywhere
 Files
 Online

 A file is a series of bytes stored on a computer
 Usually, a file is stored on a hard drive or SSD
 It's persistent, so it exists after a program is done running
 Files allow us to do input that would be tedious by hand
 Files also allow us to do output that is too long to read in one

go

 Files include:
 Images like .jpg or .png files
 Audio files like .flac or .mp3 files
 Movies like .mp4 files
 Office files like spreadsheets and this PowerPoint

 We're going to start with simple text files
 They only contain unformatted text
 They're human-readable
 Programs like Notepad can read them

 We can open a text file with the open() function
 It takes two string arguments:
 File name
 Mode (reading: 'r', writing: 'w', or append: 'a')

 Append is like writing, except that append writes to the end of
the file while writing destroys whatever used to be in the file

file = open('data.txt', 'r')

 After you open a file and read from it or write to it, you need to
close it

 Files take up resources on the system, so having too many open
files is wasteful

 There can be issues with reading or writing a file that another
program has open

 Some of your data might get lost if you're writing to a file and
forget to close it before your program ends

 To close a file, call the file reference's close()method

file.close()

 Because it's annoying to have to remember to close a file,
Python has syntax that makes it unnecessary

 This alternative style starts with the keyword with
 Then, code using the file is in an indented block

 The file is automatically closed after the indented block

with open('data.txt', 'r') as file:
Do the reading you want to do with file
Do some calculations

 Files are often read one line at a time
 Python lets us iterate over the file as if it were a list of lines

with open('alice.txt', 'r') as story:
for line in story:

print(line)

 We introduced split() earlier
 It allows us to break a string into a list of strings
 With no argument, it will break up the strings based on white space

 With a single character as an argument, it will break up strings based on that

phrase = 'It was a stark and dormy night'
words = phrase.split()
['It', 'was', 'a', 'stark', 'and', 'dormy', 'night']

text = 'potatoes:tomatoes:Barbados'
items = text.split(':')
['potatoes', 'tomatoes', 'Barbados']

 Each line of a file might contain several data fields.
 The split() method can be used to break a line into a list of

fields
 For example, a comma-separated-value (CSV) file divides

values with commas

with open('data.csv', 'r') as data:
for line in data:

for column in line.split(','):
print(column)

 Here are a few useful file methods that can be used for reading or writing
individual lines or characters:
 read() Reads entire file as a single string
 read(n) Reads n characters from file as a string
 readline() Reads the next line of the file
 readline(n) Reads n characters from the next line of the file
 readlines() Reads all the lines of the file as a list of strings
 readlines(n) Reads n lines of the file as a list of strings
 write(s) Write the string s to the file

 Each of these file methods would be called on an open file reference:

with open('data.txt', 'r') as data:
firstLine = data.readline()

 We have a file called starbucks.csv that has information
about North American Starbucks stored in a CSV format with
the following fields:
 Longitude (x location)
 Latitude (y location)
 Name (in quotes)
 Address (in quotes)

 Available here:
https://introcs.cs.princeton.edu/java/data/starbucks.csv

https://introcs.cs.princeton.edu/java/data/starbucks.csv

 Let's find the maximum and minimum longitudes and latitudes
 Algorithm:
 Open the file for reading
 Initialize our variables for max and min longitude and latitude
 Loop over all the lines in the file
▪ Split each line
▪ Convert the first value in the split-up line to a decimal value for longitude
▪ Convert the second value in the split-up line to a decimal value for latitude
▪ Update maximums and minimums

 Print out maximums and minimums

 We can draw the locations we found in the previous example
with turtle graphics

 All we have to do is go to the (longitude, latitude) location and
draw a dot (with a size of 3, so that the dot is small)

 A few suggestions that will make the output nicer:
 Get a screen object and set the world coordinates to have a min x of

-180, min y of 0, max x of 0, and max y of 90
 Put the turtle's tail up, set its speed to 0, and hide it
 Call turtle.tracer(100) so that it only updates the screen

every 100 draw operations, making things much faster

 while loops
 Work time for Assignment 4

 Read section 5.3 of the textbook
 Finish Assignment 4
 Due Friday before midnight!

	COMP 1800
	Last time
	Questions?
	Assignment 4
	Exam 1 Post Mortem
	Files
	Big data
	Files
	Text Files
	Opening a file
	Closing a file
	Using with/as
	File processing
	split()
	Using split() with files
	File methods
	Example file
	Longitudes and latitudes
	Drawing Starbucks locations
	Upcoming
	Next time…
	Reminders

