
Week 6 - Wednesday

 What did we talk about last time?
 Exam!
 Before that:
 Dictionaries
 Review for Exam 1

 We started with programs that had no input
 All the data was hard-coded into the program

 We started prompting the user for information using the
input() command

 Now we will allow our programs to access data from
anywhere
 Files
 Online

 A file is a series of bytes stored on a computer
 Usually, a file is stored on a hard drive or SSD
 It's persistent, so it exists after a program is done running
 Files allow us to do input that would be tedious by hand
 Files also allow us to do output that is too long to read in one

go

 Files include:
 Images like .jpg or .png files
 Audio files like .flac or .mp3 files
 Movies like .mp4 files
 Office files like spreadsheets and this PowerPoint

 We're going to start with simple text files
 They only contain unformatted text
 They're human-readable
 Programs like Notepad can read them

 We can open a text file with the open() function
 It takes two string arguments:
 File name
 Mode (reading: 'r', writing: 'w', or append: 'a')

 Append is like writing, except that append writes to the end of
the file while writing destroys whatever used to be in the file

file = open('data.txt', 'r')

 After you open a file and read from it or write to it, you need to
close it

 Files take up resources on the system, so having too many open
files is wasteful

 There can be issues with reading or writing a file that another
program has open

 Some of your data might get lost if you're writing to a file and
forget to close it before your program ends

 To close a file, call the file reference's close()method

file.close()

 Because it's annoying to have to remember to close a file,
Python has syntax that makes it unnecessary

 This alternative style starts with the keyword with
 Then, code using the file is in an indented block

 The file is automatically closed after the indented block

with open('data.txt', 'r') as file:
Do the reading you want to do with file
Do some calculations

 Files are often read one line at a time
 Python lets us iterate over the file as if it were a list of lines

with open('alice.txt', 'r') as story:
for line in story:

print(line)

 We introduced split() earlier
 It allows us to break a string into a list of strings
 With no argument, it will break up the strings based on white space

 With a single character as an argument, it will break up strings based on that

phrase = 'It was a stark and dormy night'
words = phrase.split()
['It', 'was', 'a', 'stark', 'and', 'dormy', 'night']

text = 'potatoes:tomatoes:Barbados'
items = text.split(':')
['potatoes', 'tomatoes', 'Barbados']

 Each line of a file might contain several data fields.
 The split() method can be used to break a line into a list of

fields
 For example, a comma-separated-value (CSV) file divides

values with commas

with open('data.csv', 'r') as data:
for line in data:

for column in line.split(','):
print(column)

 Here are a few useful file methods that can be used for reading or writing
individual lines or characters:
 read() Reads entire file as a single string
 read(n) Reads n characters from file as a string
 readline() Reads the next line of the file
 readline(n) Reads n characters from the next line of the file
 readlines() Reads all the lines of the file as a list of strings
 readlines(n) Reads n lines of the file as a list of strings
 write(s) Write the string s to the file

 Each of these file methods would be called on an open file reference:

with open('data.txt', 'r') as data:
firstLine = data.readline()

 We have a file called starbucks.csv that has information
about North American Starbucks stored in a CSV format with
the following fields:
 Longitude (x location)
 Latitude (y location)
 Name (in quotes)
 Address (in quotes)

 Available here:
https://introcs.cs.princeton.edu/java/data/starbucks.csv

https://introcs.cs.princeton.edu/java/data/starbucks.csv

 Let's find the maximum and minimum longitudes and latitudes
 Algorithm:
 Open the file for reading
 Initialize our variables for max and min longitude and latitude
 Loop over all the lines in the file
▪ Split each line
▪ Convert the first value in the split-up line to a decimal value for longitude
▪ Convert the second value in the split-up line to a decimal value for latitude
▪ Update maximums and minimums

 Print out maximums and minimums

 We can draw the locations we found in the previous example
with turtle graphics

 All we have to do is go to the (longitude, latitude) location and
draw a dot (with a size of 3, so that the dot is small)

 A few suggestions that will make the output nicer:
 Get a screen object and set the world coordinates to have a min x of

-180, min y of 0, max x of 0, and max y of 90
 Put the turtle's tail up, set its speed to 0, and hide it
 Call turtle.tracer(100) so that it only updates the screen

every 100 draw operations, making things much faster

 while loops
 Work time for Assignment 4

 Read section 5.3 of the textbook
 Finish Assignment 4
 Due Friday before midnight!

	COMP 1800
	Last time
	Questions?
	Assignment 4
	Exam 1 Post Mortem
	Files
	Big data
	Files
	Text Files
	Opening a file
	Closing a file
	Using with/as
	File processing
	split()
	Using split() with files
	File methods
	Example file
	Longitudes and latitudes
	Drawing Starbucks locations
	Upcoming
	Next time…
	Reminders

